Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Nobuo Okabe* and Yasunori Muranishi

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan

Correspondence e-mail: okabe@phar.kindai.ac.jp

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C-C}) = 0.005 \text{ Å}$ R factor = 0.036 wR factor = 0.129 Data-to-parameter ratio = 15.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

trans-Diaquabis(isoquinoline-1carboxylato- $\kappa^2 N$,O)zinc(II) dihydrate

The title complex, $[Zn(C_{10}H_6NO_2)_2(H_2O)_2]\cdot 2H_2O$, has a distorted octahedral coordination, in which the Zn^{II} atom lies on a centre of symmetry. The coordination bond length of the aqua O atom, 2.208 (2) Å, in the axial direction is longer than those of the carboxylato O atom and the ring N atom of the bidentate isoquinoline-1-carboxylate ligand in the equatorial plane [2.068 (2) and 2.084 (3) Å, respectively].

Received 2 April 2003 Accepted 8 April 2003 Online 23 April 2003

Comment

Isoquinoline-1-carboxylic acid (IQCA) inhibits the copper enzyme, dopamine β -hydroxylase (Townes *et al.*, 1990). Previously, the crystal structures of the Cu^{II} (Tomas *et al.*, 1999), Sn^{IV} (Smith *et al.*, 1995), Co^{II} and Ni^{II} complexes (Okabe & Muranishi, 2002) of IQCA have been reported, establishing the coordination modes of the complexes. In this study, we sought to determine the structure of the Zn^{II} complex (I), because Zn^{II} has many important biological functions, for example as a catalytic ion in many enzymes such as alcohol dehydrogenase (Esposito *et al.*, 2002), or a zinc finger motif in a ribosomal protein (Dresios *et al.*, 2002) or an insulin-mimetic complex in metallopharmaceutical compounds (Sakurai *et al.*, 2002).

The molecular structure of (I) is shown in Fig. 1. The Zn^{II} atom has a distorted octahedral coordination, in the *trans* form, defined by two N atoms and two O atoms of the two bidentate ligands in the equatorial plane, and two axial aqua O atoms. The Zn atom lies on a centre of symmetry. The coordination mode of (I) strongly resembles that of the Co^{II} and Ni^{II} complexes (Okabe & Muranishi, 2002). The coordination bond length in the axial direction [Zn1–O1W 2.208 (2) Å] is longer than those in the equatorial plane (Table 1). The O–Zn–N chelate angle of the five-membered ring, 78.91 (10)°, is larger than in the Co^{II} complex, 78.25 (7)°, but smaller than in both the Ni^{II} complex, 80.00 (9)° (Okabe & Muranishi, 2002), and the Cu^{II} complex, 82.96 (12)° for one of

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

the two isoquinoline-1-carboxylate ligands and 83.15 (12)° for the second (Tomas *et al.*, 1999). The coordinated M—N bond lengths are 2.096 (2) (Co^{II}), 2.039 (3) (Ni^{II}), 2.084 (3) (Zn^{II}), and 1.957 (3) and 1.969 (3) Å (Cu^{II}). These results indicate that the order of stability of these complexes corresponds to the well known Irving–Williams series, Co^{II} < Ni^{II} < Cu^{II} > Zn^{II}. In the crystal structure, the isoquinoline rings are stacked with respect to each other, with a mean separation distance of 3.392 (5) Å, in a manner similar to that in the Co^{II} and Ni^{II} complexes (Okabe & Muranishi, 2002). Hydrogen bonds are formed between the coordinated water, the carboxylate group and the uncoordinated water molecules (Table 2).

Experimental

Colorless plate-shaped crystals of (I) were obtained by slow evaporation of a methanol-water solution (90:10%, ν/ν) of a mixture of isoquinoline-1-carboxylic acid and ZnSO₄·7H₂O (molar ratio 4:1).

Crystal data

$[Zn(C_{10}H_6NO_2)_2(H_2O)_2]\cdot 2H_2O$	$D_x = 1.628 \text{ Mg m}^{-3}$
$M_r = 481.77$	Mo K α radiation
Monoclinic, $P2_1/n$	Cell parameters from 25
a = 12.224 (1) Å	reflections
b = 5.341 (2) Å	$\theta = 12.8 - 14.5^{\circ}$
c = 15.191(1) Å	$\mu = 1.30 \text{ mm}^{-1}$
$\beta = 97.625 \ (7)^{\circ}$	T = 296.2 K
$V = 983.0 (4) \text{ Å}^3$	Plate, colorless
Z = 2	$0.30 \times 0.10 \times 0.05 \ \mathrm{mm}$
Data collection	
Rigaku AFC-5R diffractometer	$R_{\rm int} = 0.026$

Rigaku AFC-5*R* diffractometer ω -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.855$, $T_{max} = 0.937$ 2598 measured reflections 2247 independent reflections 1477 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	H-atom paramters constrained
$R[F^2 > 2\sigma(F^2)] = 0.036$	$w = 1/[\sigma^2 (F_o^2) + (0.1P)^2]$
$wR(F^2) = 0.129$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.82	$(\Delta/\sigma)_{\rm max} < 0.001$
2247 reflections	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
142 parameters	$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

 $\theta_{\rm max} = 27.5^\circ$

 $h = 0 \rightarrow 15$

 $k = 0 \rightarrow 6$

 $l = -19 \rightarrow 19$

3 standard reflections

every 150 reflections

intensity decay: 0.4%

Table 1

Selected geometric parameters (Å, $^{\circ}$).

Zn1-O1 Zn1-O1W	2.068 (2) 2.208 (2)	Zn1-N1	2.084 (3)
O1-Zn1-O1W	90.11 (9)	O1W-Zn1-N1	91.71 (9)
O1-Zn1-N1	78.91 (10)	Zn1-O1-C10	115.4 (2)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1A\cdotsO1^{i}$	0.81	2.03	2.831 (3)	169
$O1W-H1B\cdots O2W^{ii}$	0.82	2.01	2.830 (4)	172
$O2W-H2A\cdots O2$	0.82	1.90	2.721 (4)	175
$O2W-H2B\cdots O2W^{iii}$	0.82	2.17	2.944 (3)	157

Symmetry codes: (i) x, 1 + y, z; (ii) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$; (iii) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$.

Figure 1

ORTEPII (Johnson, 1976) drawing of (I), with the atomic numbering scheme. Ellipsoids for non-H atoms are drawn at the 50% probability level. Atoms marked with an asterisk (*) are at the symmetry-related positions (-x, -y, -z).

H atoms were treated in the riding model approximation.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1992); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN* (Molecular Structure Corporation, Rigaku Corporation, 2000); program(s) used to solve structure: *SIR*97 (Altomare *et al.*, 1999) & *DIRDIF*94 (Beurskens *et al.*, 1994); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *TEXSAN*.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., de Gelder, R., Israel, R. & Smits, J. M. M. (1994). *The DIRDIF94 Program System*. Technical Report, Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Dresios, J., Chan, Y.-L. & Wool, I. G. (2002). J. Mol. Biol. 316, 475-488.

Esposito, L., Sica, F., Raia, C. A., Giordano, A., Rossi, M., Mazzarella, L. & Zagari, A. (2002). J. Mol. Biol. 318, 463–477.

- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1992). *MSC/AFC Diffractometer Control Software*. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Molecular Structure Corporation & Rigaku (2000). *TEXSAN*. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.

- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Okabe, N. & Muranishi, Y. (2002). Acta Cryst. C58, m578-m580.
- Sakurai, H., Kojima, Y., Yoshikawa, Y., Kawabe, K. & Yasui, H. (2002). Coord. Chem. Rev. 226, 187–198.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Smith, F. E., Khoo, L. E., Chia, L. S. & Hynes, R. C. (1995). *Can. J. Chem.* **73**, 1436–1443.
- Tomas, O. P. A., Viossat, B., Bachet, B. & Nguyen-Huy, D. (1999). Z. Kristallogr. New Cryst. Struct. 214, 61–62.
- Townes, S., Titone, S. & Rosenberg, R. C. (1990). *Biochim. Biophys. Acta*, **1037**, 240–247.